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ABSTRACT

In calculating the position vector of the Moon in on-board flight software,

one often begins by using a series expansion to calculate the ecliptic latitude

and longitude of the Moon, referred to the mean ecliptic and equinox of date.

One then performs a reduction for precession, followed by a rotation of the

position vector from the ecliptic plane to the equator, and a transformation

from spherical to Cartesian coordinates before finally arriving at the desired

result: equatorial J2000 Cartesian components of the lunar position vector. An

alternative method is developed here in which the equatorial J2000 Cartesian

components of the lunar position vector are calculated directly by a series ex-

pansion, saving valuable on-board computer resources.

INTRODUCTION

The calculation of the orbit of the Moon is one of the oldest problems in

celestial mechanics. Its solution has had great historical significance as a test

of Newton’s theory of gravity, with much of the early work on the problem

having been done by Newton himself in his discussion of the two- and three-

body problems in Book I of the Principia. In past centuries, accurate predictions

of the position of the Moon have also been of great practical interest as a

navigational aid for seafaring vessels, prompting the English government and

scientific societies to offer rewards for accurate lunar prediction tables.1 The

resulting body of work developed during the eighteenth and nineteenth centuries

forms the basis of the lunar theory still in use today.

Modern lunar theory was first developed by G.W. Hill2−5 in 1878, and later

expanded and improved by E.W. Brown6 in 1896. The problem of lunar motion

addressed by Hill and Brown is a surprisingly difficult one; while the underlying

physical laws are very simple, the motion itself is quite complex.7−11 The basic

motion of the Moon around Earth is affected by many strong perturbations such

as those due to the Sun, the other planets, and Earth’s equatorial bulge. These

perturbations result in an advancement of the line of apsides of the lunar orbit,

a regression of the line of nodes, and other periodic perturbations superimposed

on these motions. For high accuracy, it is necessary to compute hundreds of

periodic variations in the motion, although computing only the most important

few terms results in a level of accuracy that is adequate for flight software use.

There have been two major reasons for calculating the position of the Moon

in spacecraft on-board computer flight software. First, one often wishes to write



flight software to prevent the spacecraft from pointing sensitive instruments at

the Moon, which can have an apparent magnitude as bright as −12 at full

Moon.12 Second, one may require the flight software to calculate stellar aberra-

tion corrections.13 For high accuracy, this requires calculating the velocity vector

of Earth with respect to the Earth-Moon barycenter, which in turn requires a

calculation of the lunar velocity vector. If the flight software can calculate a

lunar position vector, then this velocity vector may be found by differentiating

the lunar position vector with respect to time.

REVIEW OF CURRENT MODELS

A number of approaches for calculating a lunar position vector are currently

used by spacecraft flight software. In the flight software for the Hubble Space

Telescope’s DF-224 flight computer, for example, one finds the position of the

Moon using a simple two-body model. The standard two-body calculations14

are modified somewhat to allow for the motion of the nodes and apsides of the

lunar orbit. A new set of orbital elements is uplinked from the ground every

few days to keep the error in the model to within acceptable limits, on the order

of 1◦. While this model is not highly accurate, it has the virtue of being very

fast–a necessity for the 1970s-vintage flight computer.

An approach commonly used with more modern flight computers is based on

the low-precision formulae given in the Astronomical Almanac.15,16 This model

is based on earlier work done by the Almanac Offices of the United States and

United Kingdom17 and by Eckert, Walker, and Eckert,18 all of which are based

on Brown’s lunar theory.6 In this model, one begins by using series expansions

to calculate the ecliptic longitude λ, ecliptic latitude β, and horizontal parallax

π of the Moon, referred to the mean ecliptic and equinox of date:

λ = 218◦.32 + 481 267◦.883 t

+6◦.29 sin(477 198◦.85 t+ 134◦.9)

−1◦.27 sin(−413 335◦.38 t+ 259◦.2)

+0◦.66 sin(890 534◦.23 t+ 235◦.7)

+0◦.21 sin(954 397◦.70 t+ 269◦.9)

−0◦.19 sin(35 999◦.05 t+ 357◦.5)

−0◦.11 sin(966 404◦.05 t+ 186◦.6) , (1)

β = +5◦.13 sin(483 202◦.03 t+ 93◦.3)

+0◦.28 sin(960 400◦.87 t+ 228◦.2)

−0◦.28 sin(6 003◦.18 t+ 318◦.3)

−0◦.17 sin(−407 332◦.20 t+ 217◦.6) , (2)



π = 0◦.9508

+0◦.0518 cos(477 198◦.85 t+ 134◦.9)

+0◦.0095 cos(−413 335◦.38 t+ 259◦.2)

+0◦.0078 cos(890 534◦.23 t+ 235◦.7)

+0◦.0028 cos(954 397◦.70 t+ 269◦.9) . (3)

The horizontal parallax π gives the Earth-Moon distance r:

r =
R⊕

sin π
, (4)

where R⊕ = 6378.140 km is the equatorial radius of Earth (IAU 1976 value). 19

Having found the lunar ecliptic mean-of-date coordinates, one must then

perform a reduction for precession to epoch J2000 (2000 January 01 12:00:00

Barycentric Dynamical Time) to find the ecliptic J2000 coordinates (λ0, β0).

To sufficient precision, this may be found using the formulae20

β0 = β − b sin(λ+ c) , (5)

λ0 = λ− a+ b cos(λ + c) tanβ0 , (6)

where the precession constants a, b, and c are given by

a = 1◦.396 971 t+ 0◦.000 3086 t2 , (7)

b = 0◦.013 056 t− 0◦.000 0092 t2 , (8)

c = 5◦.123 62− 1◦.155 358 t− 0◦.000 1964 t2 , (9)

and where t is the time in Julian centuries (cy) of 36 525 days from J2000:

t = (JDE− 245 1545.0)/36 525 , (10)

and JDE is the ephemeris Julian day.

The remaining step is to rotate the coordinates from the plane of the mean

ecliptic of J2000 to the mean equator of J2000, and to convert from spherical

polar to Cartesian coordinates:

X = r cosβ0 cosλ0 , (11)

Y = r(cosβ0 sinλ0 cos ε0 − sinβ0 sin ε0) , (12)

Z = r(cosβ0 sinλ0 sin ε0 + sinβ0 cos ε0) , (13)

where r is given by Eq. (4) and ε0 = 23◦ 26′ 21′′.448 is the obliquity of the

ecliptic at J2000 (IAU 1976 value).21

This model has very good precision for on-board flight software use: the rms

error in the lunar position is about 0◦.11, with a maximum error of about 0◦.35.



A NEW MODEL

Many of the equations involved in computing the position of the Moon us-

ing the method just described involve what is essentially a coordinate transfor-

mation, from ecliptic mean-of-date coordinates to equatorial J2000 Cartesian

coordinates. In this paper, I investigate the possibility of calculating the equa-

torial J2000 Cartesian coordinates directly by series expansions similar to Eqs.

(1—3), thus eliminating the need for performing the coordinate transformations

in on-board flight software.

We begin by assuming that each of the J2000 equatorial Cartesian coordi-

nates Xn may be represented by Fourier sine series:

Xn =

Nn∑
m=1

anm sin(ωnm t+ δnm) , (14)

where X1 ≡ X , X2 ≡ Y , and X3 ≡ Z; Nn is the order of the series for Xn.

We now need to find the amplitudes anm, frequencies ωnm, and phase constants

δnm. This may be done by fitting these parameters to the DE200 ephemeris

model22,23 using an exhaustive search. DE200 is an ephemeris model developed

at the Jet Propulsion Laboratory, and has been used to produce tables in the

Astronomical Almanac since 1984. It calculates Cartesian coordinates of Solar

System objects, referred directly to the mean equator and equinox of J2000.

For each coordinate, the terms of the series in Eq. (14) may be found one

at a time by simultaneously fitting the parameters anm, ωnm, and δnm over a

grid of possible values to the DE200 model. An algorithm for accomplishing

this involves calculating the error εaωδ between the DE200 model and a “test

model” a sin(ωt+ δ) using each combination of parameters a, ω, and δ:

for a = amin to amax

for ω = ωmin to ωmax

for δ = δmin to δmax

εaωδ =
∑

2100

t=2000[XDE200(t)− a sin(ωt+ δ)]2 ,

where the summation is over 216 points covering the interval A.D. 2000—2100.

The smallest error εaωδ found gives the best fit parameters a, ω, and δ. This

process may be repeated several times over successively smaller search ranges

and finer grid spacings in order to find more significant digits for the parameters.

Once a term has been found, it is subtracted from the DE200 data, and the whole

process repeated on the remaining data to find the next term in the series.

In the model given by Eq. (14), we assume that the amplitudes anm are all

positive, so that amplitudes may be searched over a grid of values between 0 and

the maximum in the data set. The amplitudes may be assumed to be positive

without loss of generality by allowing the phase constants δnm to be searched

over the entire range 0 to 2π: since − sin θ ≡ sin(θ + π), any potential minus

sign in the amplitude is simply absorbed as an extra π radians added to the

phase constant.



Fourier Transform of Lunar X Coordinate
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Figure 1. Fourier spectrum of lunar X coordinate (A.D. 2000—2100).

Determining a search range for the frequencies ωnm is somewhat more com-

plicated than it is for the amplitudes and phase constants. A search range for

ωnm may be determined by examining the peaks in the Fourier transform X̂n(ω)

of the DE200 data:

X̂n(ω) =

∫
∞

−∞

Xn(t) e
iωt

dt , (15)

where Xn(t) is the position coordinate at time t, and ω is the angular frequency.

This Fourier transform may be calculated by using the DE200 model to compute

the lunar position vector at N discrete time points tk, then finding the discrete

Fourier transform X̂n(ωp):

X̂n(ωp) =

N−1∑
k=0

Xn(tk) e
iωptk , (16)



where Xn(tk) is the position vector at time point tk, ωp = 2πp/tN is the angular

frequency, and p = 0, 1, 2, . . . , N − 1. For this study, N = 214 time points were

chosen over the time interval A.D. 2000—2100; the magnitude of the resulting

Fourier transform |X̂1(ωp)| for X is shown in Figure 1. For each term in the

series expansion (Eq. 14), a search range is taken around one of the peaks in

the Fourier spectrum.

This exhaustive search process, which is essentially a curve fit to the DE200

model, required about one week of computer time to find each term in a series,

and some five months of computer time to find the complete solution to seven

terms per series. The final results are:

X = 383.0 sin (8399.685 t + 5.381)

+ 31.5 sin (70.990 t + 6.169)

+ 10.6 sin (16 728.377 t + 1.453)

+ 6.2 sin (1185.622 t + 0.481)

+ 3.2 sin (7143.070 t + 5.017)

+ 2.3 sin (15 613.745 t + 0.857)

+ 0.8 sin (8467.263 t + 1.010) × 106 m , (17)

Y = 351.0 sin (8399.687 t + 3.811)

+ 28.9 sin (70.997 t + 4.596)

+ 13.7 sin (8433.466 t + 4.766)

+ 9.7 sin (16 728.380 t + 6.165)

+ 5.7 sin (1185.667 t + 5.164)

+ 2.9 sin (7143.058 t + 0.300)

+ 2.1 sin (15 613.755 t + 5.565) × 106 m , (18)

Z = 153.2 sin (8399.672 t + 3.807)

+ 31.5 sin (8433.464 t + 1.629)

+ 12.5 sin (70.996 t + 4.595)

+ 4.2 sin (16 728.364 t + 6.162)

+ 2.5 sin (1185.645 t + 5.167)

+ 3.0 sin (104.881 t + 2.555)

+ 1.8 sin (8399.116 t + 6.248) × 106 m , (19)

where all angles are given in radians for convenience of use in software, t is the

time in Julian centuries from J2000 given by Eq. (10), and X , Y , and Z are

the Cartesian components of the lunar position vector, referred to the mean

equator and equinox of J2000. The terms are arranged in order of decreasing

contribution to the reduction in the error of the model.



One of the primary advantages of this model is that it allows a lunar ephemeris

to be programmed in flight software using very little code. Using Eqs. (17—19),

an entire lunar ephemeris model may be programmed in just a few lines of C

code:

for (n=0; n<3; n++)

{

x[n] = 0.0;

for (m=0; m<7; m++)

x[n] += a[n][m]*sin(w[n][m]*t+delta[n][m]);

}

Calculations for the reduction for precession, rotation from the ecliptic to the

equator, and transformation from spherical polar to Cartesian coordinates have

essentially been “absorbed” into the series coefficients, and so do not need to

be performed explicitly.

DISCUSSION OF THE NEW MODEL

An examination of the frequencies in the terms of the Astronomical Almanac

model of Eqs. (1—3) and of the new model of Eqs. (17—19) gives some interesting

insights into the lunar motion. The frequencies in the Astronomical Almanac

model are all computed as functions of the mean anomalies and mean longitudes

of the Sun and Moon,16 while the frequencies in the model given by Eqs. (17—19)

are determined entirely by a curve fit. We examine the origins of some of the

more prominent frequencies in both models below.

Anomalistic Month

The dominant term in the expressions for the ecliptic longitude λ (Eq. 1)

and horizontal parallax π (Eq. 3) have a frequency of 477 198.85 deg cy−1.

In deriving the Astronomical Almanac series, this frequency was computed as

the rate of change of the Moon’s mean anomaly. Since the mean anomaly is

measured in the plane of the orbit from the perigee point, one complete cycle

of the mean anomaly requires the same amount of time as the Moon’s motion

from its perigee point to its next perigee. It comes as no surprise, then, that

this frequency of 477198.85 deg cy−1 is equal to one revolution per anomalistic

month of 27.554550 days, where an anomalistic month is the time required for

the Moon to move from perigee to perigee.

Draconic Month

For the ecliptic latitude β (Eq. 2), the dominant term has a frequency of

483202.03 deg cy−1. This was computed as the rate of change of the Moon’s

mean longitude, which is measured from the vernal equinox to the ascending

node along the ecliptic plane, then from the node to the Moon along the orbit

plane. The Moon will have β = 0 only when it is at one of the nodes of the

orbit, and it will next have β = 0 again (crossing the node in the same direction)



when it returns to the same node again. We might therefore expect that the

dominant term in the expression for the ecliptic latitude will be the time required

for the Moon to move from an orbital node back to the same node. Indeed, the

frequency of 483 202.03 deg cy−1 is equal to one revolution per draconic month

of 27.212221 days, where a draconic month is the time required for the Moon

to move from an orbital node back to the same node.

Sidereal Month

In the series for X , Y , and Z in the new model (Eqs. 17—19), on the other

hand, the dominant terms all have a frequency of about 8399.685 rad cy−1,

which is equal to 1 revolution per sidereal month of 27.321662 days, where a

sidereal month is measured with respect to the fixed stars. This is a reflection of

the model having its coordinate system fixed in space (mean of J2000 equatorial

coordinates).

Motion of the Apsides

A comparison of the model of Eqs. (1—3) with the new model of Eqs. (17—

19) shows that the new model includes an important term that does not appear

in the conventional model, having a frequency of about 70.99 rad cy−1. This

frequency reflects the motion of the line of apsides of the lunar orbit. The

expected frequency of this motion may be computed from the periods of the

anomalistic and sidereal months:

ω =
2π

sidereal mo.
−

2π

anomalistic mo.

=

(
2π

27.321 662d
−

2π

27.554 550d

)
× 36 525

days

cy

= 70.9932 rad cy−1 (20)

in close agreement with the frequencies found using the curve fit.

ERROR ANALYSIS

The results shown in Eqs. (17—19) have been checked against the DE200

ephemeris model by using DE200 to generate lunar X , Y , and Z coordinates at

220 (over one million) time points between A.D. 2000 January 1 and A.D. 2100

January 1, corresponding to roughly one point every fifty minutes for 100 years.

The model shown in Eqs. (17—19) was run at the same time points, and the

results compared with the DE200 results. This error analysis shows an rms

position error between DE200 and the new model of Eqs. (17—19) of 0◦.341, and

a maximum error of 1◦.033.



CONCLUSIONS

Three lunar ephemeris models for on-board flight software use have been

discussed. A modified two-body model is very fast, but is of low precision

and requires constant maintenance in the form of periodic updates of orbital

elements from the ground. The model currently in common use, which is based

on the low-precision formulae in the AstronomicalAlmanac, is of very good

precision and will run indefinitely without ground intervention, but requires code

to convert the calculated ecliptic mean-of-date coordinates to equatorial J2000

Cartesian coordinates. The method developed in this paper is of intermediate

precision, requires the least code of the three, and will also run indefinitely

without ground intervention. It may have applications for small missions where

computer resources are limited and its precision is acceptable.
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